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Task 1

Distinguishing objects from one another and background can be done via edge detection algorithms.

Task 1.1 - Canny edge detection

The Canny edge detection algorithm aims to identify and extract the edges of objects within
an image by reducing noise and preserving important edge features. It analyzes the change in
magnitude among pixel intensities to determine the existence of an edge. The way in which canny
was implemented follows [2] and is summarized as:

• Step 1: Smoothing the image using a Gaussian filter 10. This step is important for the
noise reduction in the input image. It is known that excess noise can introduce false edges,
that could compromise the accuracy of the implemented algorithm.

• Step 2 and 3: Computation of image derivatives and finding the magnitude and
orientation of the gradients. The gradient measures how fast intensity changes in each
pixel’s location. To achieve that the concept of derivatives is being used to determine both
gradient and magnitude (Sobel kernel for X and Y axis).

Figure 1: X/Y derivatives, Gradient magnitude, and orientation output

As is evident from the figure 1 the X derivative computation highlights the vertical edges,
due to the fact that it calculates the difference between pixel intensities while sweeping it
horizontally. Similarly in the Y derivative, the computation shows the horizontal edges as the
calculation of pixels is conducted vertically.

The third image shows the summation of edges (Gradient magnitude), which is done by
finding the Pythagorean of both derivatives (

√
(dx2 + dy2))[5], thus representing the overall

change in pixel intensity in all directions. (θ = 2 × arctan(dx, dy))[5] is the formula that we
used to calculate the Gradient Orientation. This is needed in order to preserve the edges with
a major change in intensity in a specific direction (fining the edges).
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Figure 2: Fined edges

• Step 4: Applying the Non-maximum suppression. This step is crucial for representing
actual edges in the image. The algorithm finds local maxima of gradient magnitude along the
gradient direction and suppresses all the non-maximums.

• Step 5: Applying high and low thresholds - hysteresis. Within the double threshold
part edges are categorized into three groups: non-edges (that are being discarded), strong
edges (definite edges), and weak edges.

Figure 3: Comparison between different thresholding values

Our trials showed that neither big nor small differences between the threshold values work
properly to highlight edges, since the small differences (when both thresholds are high in value)
result in the elimination of major edges and thus failure in detection of continuous ones.

In case both thresholds are small in value, more edges with noise appear, which indicates it
becomes harder for the algorithm to differentiate between weak and strong edges. When having
a difference margin between the two thresholds, most of the edges are considered as weak edges
which makes important ones dispensed.

In reference to the results of Canny’s function in figure 4 our implementation shows exact same
edge highlight, yet has different white shades on them. We have experimented with different values
for the Gaussian kernel size, the results evidently show that 15 was the closest to the optimal value.
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That is because it allows having clear highlights of the fence edges with the least noise, hence we
considered using it with both implementations (pre-built and from scratch).

Figure 4: Comparison between OpenCV Canny’s function and ours

Task 1.2 - Counting the number of posts

Figure 5: Counted
posts

As is evident from figure 5, our implementation of Canny’s edge detection
and, post-count algorithm revealed that there are 10 posts presented in
the image.

The algorithm is explained in the code C with comments. The main
idea behind it is that the algorithm will loop over all the image columns
and if a minimum number of white pixels is counted, then the column is
marked as a single side of the post. The total number of vertical lines has
to be divided by two to get the final answer since each post is made of two
vertical lines.

Task 2

In the second half of the assignment, the Laplacian of Gaussian (LoG) filter for blob detection was
implemented and analyzed in detail. The algorithm was implemented from scratch by following the
steps outlined in the lecture notes [6] and some code was inspired by [4].

Implementation steps for the (LoG):

• Generate a number of kernels of different sizes and σ values. Different scales to find blobs of
different sizes.

• Perform Laplacian of Gaussian (take the second derivative of an image with additional Gaus-
sian smoothing), namely convolving kernels from the previous step with the original image.

• Detect blobs for every resulting image - save the center and radius of each activated area.

• Apply non-maximum suppression to reduce the number of blobs by removing duplication
and/or overlapping.
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Task 2.1 - Unnormalized Laplacian of Gaussian

Idea: Convolve an image with multiple different-scale ”blob” filters and look for the zero-crossings
in order to find edges in the specific scale space [6].

Laplacian is a second-order derivative scale invariant filter. Unlike first-order filters, Laplacian
detects the edges at zero-crossings i.e. where the value changes from negative to positive and vice-
versa. To reduce the noise effect, the image is first smoothed with a Gaussian filter and then we
find the zero crossings using Laplacian. This two-step process is called the Laplacian of Gaussian
(LoG) operation.

The formula for the unnormalized kernel can be found below:

LoG(x, y) = − 1

πσ4

[
1− x2 + y2

2σ2

]
exp−

x2+y2

2σ2

It is worth mentioning that the sign in front of the formula has a major impact on the detection
process: minus means that dark blobs on a bright background are going to be detected. Conversely,
a plus means that light blobs on a dark background will be found. [3]

The steps mentioned previously were meticulously carried out to detect dark blobs with light
background. A detailed explanation and intermediate results on how the algorithm has been im-
plemented can be found in the appendix section B. A great example of the final output for dark
blob detection is found in Figure 6. An intermediate output before the non-maximum suppression
can be found in Figure 16

Figure 6: On the left is the result from our implementation, on the right - the output from the
skimage library

Task 2.2 - Normalized Laplacian of Gaussian

To improve the existing implementation of the Laplacian of Gaussian filter a concept of normaliza-
tion was introduced in the kernel creation step. Basically, all of the steps in this approach remain
the same with the only change being the additional σ2 term in the kernel-generating function. It
transformed the first two steps of the LoG function into the following view [3]:

∇2
normL(X,σ) = ∇2

normG(X,σ) ∗ I(X)
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∇2
normG(X,σ) = σ2∇2G(X,σ)

This scale-space normalization was introduced in order to minimize the decay of Laplacian
response with the increase of sigma. The introduction of σ2 (Appendix E) resolves the issue with
the response of a derivative of the Gaussian filter to a perfect step edge decreasing with the increase
of the scale figure. This helps with keeping the algorithm scale-invariant. The difference in responses
for normalized and unnormalized can be seen in the figure 7

Figure 7: Difference between unnormalized and normalized function response

Complete comparison of the results with skimage library

The results were also tested and compared with the implementation of LoG on skimage [1].
As a result, we have three output images, figure 8: (1) - Normalized LoG, (2) - unnormalized

Log, and (3) - Pre-built function. One difference is clear from the beginning, the algorithm of
skimage has more granular results and the size of the detected blob is on average smaller than in
our algorithms. This initial difference is mainly due to the parameters of the algorithm. Secondly,
it can be shown that the center of the sunflower is not detected but rather the petals are. This
means that the skimage algorithm is using the same function as us but with a plus in front of
it. As per the two algorithms implemented from scratch, both resulted in precise detections. As
expected, the normalized algorithm produced fewer outliers, due to the stronger response in the
case of successful matching, and better results as it is more precise in finding the center of the blob.
It has to be noted that the absence of smaller blobs in the first two images can be traced to one
main factor: different sigma range selection than in the algorithm.

Task 2.3 - Comparison with different threshold values

When the kernels are convolved with an image, the outputs highlight the activation of the different
kernels for every pixel [6]. Then these images are thresholded and only the values above some
threshold are going to be used for blob detection. This effect can be seen in figure 9. In this step,
the change of this parameter will be investigated.

5



CV701

Figure 8: Blob detection using different algorithms (from left to right 1-2-3)

The threshold in this case, as shown in the code F, refers to the top x% of the pixels intensity
in the image. E.g. if the maximum value is 0.45, then the threshold would be given by:

threshold = valuemax − percentage ∗ valuemax

This trick had to be used instead of a constant value because in the first part of the experiment,
the images produced by the different kernel convolutions had different maximum values as well as
range of values.

In Figure 9 the effect of thresholding of the maximum value to a top 0.x percentage of the
maximum value it is depicted. A further investigation on how our algorithm generalizes can be
seen in the appendix section B.

Figure 9: Various thresholds used to find the maximum percentage of the image that was allowed
for each chunk size
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Appendices

A Figure for Noise reduction

Figure 10: Noise reduction

The Gaussian kernel selected for our noise reduction was 15, this value was chosen after careful
observation of Canny’s performance on different window sizes.

B Detailed explanation of the LoG algorithm

Kernel generation

The kernels are generated at different scales to detect blobs of different dimensions. The sizes of
the different scales are chosen according to some heuristics [3]. The sigma is multiplied by the ith
power of

√
2. This value has been proven to yield the best results. The code of reference is D.

The result of this first step can be clearly seen in figure 11

Figure 11: The kernels with different sigma and scale size
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Image Convolution

This step involves the convolution of each kernel over the image. Figure 12 represents the results of
convolutions with different kernels 11. The brightest spots represent the points in which the LoG
has the most activation. These are the points that are supposed to be the blobs with the maximum
likelihood.

Figure 12: The convolved images with the respective sigma and kernel size

In this step, a further visualization of the convolution result was done to show the most active
spots in the images. The various activations can be seen in Figure 13. It could be difficult to see for
the first figures as the activation points are clusters of just a few pixels, however in the rightmost
figure white spots that indicate where the blob is located are clearly seen.

Figure 13: The most activated spots for every image scale

Blob Detection

First, we divide the image into chunks, with different sizes according to the sigma value. Then for
every chunk, a maximum point is selected and it becomes the center of the blob for that particular
value of sigma. We highlighted the patches where there is maximum activation in the image for the
sigma of value 8. The most white part is in the middle of the blob usually and it is the exact point
chosen for the center of the circle.

In order to achieve maximum accuracy we also needed to pad the image to divide the image
without any pixel being left out. We padded the image with the black color as it doesn’t affect the
choice of the maximum point in the blob. Without this small tweaking, some blobs near the edge
would have been left out. Figure 16b visually explains what is described in the previous lines.

After, we applied this method for every output image produced by the convolution and the
result can be clearly seen in Figure 15.

This is how we found all the blobs. Last step is only needed to make the result more clear:
non-maximum suppression algorithm.
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(a) Size 30, with σ 4 (b) Size 45, with σ 11

Figure 14: Different examples for chunk division for blob detection

Figure 15: Multiple images with the different blobs found for every scale size

Non Maximum Suppression Algorithm

A very simple non-maximum-suppression algorithm was implemented which is both accurate and
very fast. The idea is that we start from the bigger blobs and we give more importance to them.
If smaller blobs are found inside the bigger blobs, they are being eliminated from the blobs’ list. If
the blobs are too close, less than the square root of the square of the radius of the two circles, then
the second one is also eliminated. The list is shrunk dynamically so that the computational cost is
always less than O(n2).
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(a) All blobs detected in a single image, overlapping
and doubles, before non-maximum suppression

(b) Less number of blobs after the non-
maximum suppression algorithm

Figure 16: Blobs detection, before and after

Figure 17: On the left is the result from our implementation, on the right - the output from the
skimage library

Further investigation on different images

Following is just a small section about POC for our algorithms with other standard images. Using
the figure 18 it can be proven that our algorithm is robust and performs well on different imput
images. One thing that can also be noted for an accurate observer, is that in the first image
the circles are evenly distributed along the poles, especially vertically, but there is a recurring
distance between each other. This effect is likely to be due to the blob detection algorithm and the
subdivision into chunks that leaves some space between blobs.
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Figure 18: Testing the same algorithm on other images to check for robustness and generalization

C Code for counting the posts

de f count pos t s ( edge image , m in p ixe l s =100 , min co l width =7):
l i n e s = 0 #l i n e s i s s e t to 0 to count the number o f l i n e s
c o l = 0 #co l i s used to i t e r a t e over columns o f the edge image
h = in t ( l en ( edge image [ 0 ] ) ) #he ight o f the image
w = in t ( l en ( edge image [ 1 ] ) ) #width o f the image

image w i th l i n e s = edge image . copy ( )

whi l e c o l < w:
c o l p i x e l s = in t (np . sum( edge image [ : , c o l ] ) / 255)
#c a l c u l a t e s the number o f white p i x e l s in the cur rent column

i f c o l p i x e l s > min p ixe l s :
l i n e s += 1

#Draw a th i c k e r l i n e to show the v e r t i c a l l i n e in the edge image
c o l s t a r t = co l
co l end = co l + min co l width
image w i th l i n e s [ 500 : 1250 , c o l s t a r t : co l end ] = 255

co l += min co l width
#By increment ing c o l by min col width , the code sk i p s over the width
# of the detec ted l i n e be f o r e cont inu ing to search f o r the next l i n e .

c o l += 1
post s = in t ( l i n e s /2)
re turn posts , image w i th l i n e s

D Code for Laplacian 2d kernel creation

de f l ap l a c i an 2d ( sigma=1):

n = np . c e i l ( sigma ∗6)
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y , x = np . ogr id [−n//2 : n//2+1,−n//2 : n//2+1]

re turn −(1/(np . p i ∗ sigma ∗∗4)) ∗ (1− ( ( x∗∗2 + y∗∗2) / (2∗ sigma ∗∗2) ) )
∗ np . exp(−(x∗∗2+y∗∗2)/(2∗ sigma ∗∗2))

E Code for Normalized Laplacian 2d kernel creation

de f c r e a t e n o rma l i z e d l o g k e r n e l ( sigma = 1 . 0 ) :
# Step 1 : Creat ing normal ized LoG f i l t e r / ke rne l template
# c a l c u l a t i n g LoG ke rne l − mix o f gauss ian smoothing and l ap l a c i a n
#second d e r i v a t i v e to obta in ke rne l f o r convo lv ing with the image in one step
# main d i f f e r e n c e between t h i s approach and the one without norma l i za t i on
# i s add i t i o na l mu l t i p l i e r − np . square ( sigma )
# I t i s nece s sa ry to e l im ina t e the e f f e c t o f de c r ea s ing s p a t i a l d e r i v a t i v e s
# with the i n c r e a s e o f s c a l e ( sigma )
k e r n e l s i z e = np . c e i l ( sigma ∗ 6 ) . astype ( i n t )
i f k e r n e l s i z e % 2 == 0 :

k e r n e l s i z e += 1
ke rne l = np . f romfunct ion (

lambda x , y : (1 / (2 ∗ np . p i ∗ sigma ∗∗ 4) ) ∗
np . array ( [
− ( 2 . 0 ∗ sigma ∗∗ 2) + (x − ( k e r n e l s i z e //2)) ∗∗ 2
\+ (y − ( k e r n e l s i z e //2)) ∗∗ 2
] ) ∗
np . exp (−(((x − ( k e r n e l s i z e //2)) ∗∗ 2
\+ (y − ( k e r n e l s i z e //2)) ∗∗ 2) ) / ( 2 . 0 ∗ sigma ∗∗ 2 ) ) ,

( k e r n e l s i z e , k e r n e l s i z e )
)
re turn ( ke rne l ) . squeeze ( )

F Code for convolving the kernels with an image

de f log image ( img gray , n k e rn e l s =9, th r e sho ld =0 .2) :

”””
: param img : input image HAS TO BE GRAYSCALE ( or s i n g l e channel )
: param min sigma : minimum sigma value
: param max sigma : maximum sigma value
: param s t ep s : number o f s t ep s
: r e turn : l og images
”””

k = np . sq r t (2 )
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sigma = 1

ke rn e l s = [ ]
l og images = [ ]
s i gma l i s t = [ ]

# thre sho ld the l og images
l og image s th r e sho ld ed = [ ]

f o r i in range (0 , n k e rn e l s ) :
s igma curr = sigma ∗ k∗∗ i
s i gma l i s t . append ( s igma curr )

k e r n e l l o g = l ap l a c i an 2d ( sigma=s igma curr )
k e rn e l s . append ( k e r n e l l o g )

log image = sc ipy . s i g n a l . convolve2d ( img gray , k e rn e l l o g ,
mode=’same ’ , boundary=’symm’ )

log images . append ( log image )

# c r ea t e a thre sho lded image and add them to a l i s t
l og image th r e sho lded = np . z e r o s l i k e ( l og images [ i ] )
l og image th r e sho lded [ l og images [ i ] >= max( log images [ i ] . f l a t t e n ( ) )

−( th r e sho ld ∗ max( log images [ i ] . f l a t t e n ( ) ) ) ] = 1
l og image s th r e sho ld ed . append ( l og image th r e sho lded )

log images np = np . array ( l og images )

re turn log images np , ke rne l s , np . array ( l og image s th r e sho ld ed ) , s i gma l i s t

G Code for detecting the blobs in an image

de f d e t e c t b l ob v2 ( log images np , k = np . sq r t ( 2 ) , sigma = 1 , pe rcentage h igh = 0 . 5 ) :
c o o rd i na t e s = [ ]

# c r ea t e a l i s t o f c oo rd ina t e s that are sub−d iv ided in to sub− l i s t ordered
by sigma value in ascending order

c o o rd i na t e s = [ [ ] f o r i in range ( log images np . shape [ 0 ] ) ]

f o r z in range ( log images np . shape [ 0 ] ) :

s i z e = in t (np . c e i l ( sigma ∗ k∗∗ z ) ) ∗ 5

padd y = img . shape [0]% s i z e
padd x = img . shape [1]% s i z e
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log images np padded = np . pad ( log images np [ z ] , ( ( 0 , padd x ) , ( 0 , padd y ) ) ,
c on s t an t va lu e s=0)

(h ,w) = log images np padded . shape

# ca l c u l a t e r e l a t i v e th r e sho ld f o r every sigma s c a l e l e v e l
th r e sho ld = max( log images np [ z ] . f l a t t e n ())−( pe rcentage h igh ∗

max( log images np [ z ] . f l a t t e n ( ) ) )

# s p l i t the image in to chunks
f o r i in range ( i n t ( s i z e //2) , i n t (h−s i z e //2) , s i z e ) :

f o r j in range ( i n t ( s i z e //2) , i n t (w−s i z e //2) , s i z e ) :

# search f o r the maximum in the chunk and a s s i gn the
# coo rd ina t e s to be the one o f the maximum p i x e l
s l i c e img = log images np [ z , i−s i z e //2 : i+s i z e //2 , j−s i z e //2 : j+s i z e //2 ]
x max , y max = np . unrave l index (np . argmax ( s l i c e img ) , s l i c e img . shape )

# i f the max i s above some thre sho ld append i t to the l i s t
i f s l i c e img [ x max , y max ] > th r e sho ld :

c o o rd i na t e s [ z ] . append ( ( i+x max−s i z e //2 ,
j+y max−s i z e //2 , ( k∗∗ z )∗ sigma ) )

re turn co o rd i na t e s

H Code for non maximum suppression

de f non max suppress ion ( coord inate s , th r e sho ld = 1 ) :

p r i n t (” be f o r e ” , l en ( coo rd ina t e s ) )

c u r r c o o rd i n a t e s = coo rd ina t e s [ : : − 1 ]

tmp lenght = len ( cu r r c o o rd i n a t e s )

i = 0

whi le ( i < tmp lenght ) :
j = i+1
whi le j < tmp lenght :

x1 , y1 , r1 = cu r r c o o rd i n a t e s [ i ]
x2 , y2 , r2 = cu r r c o o rd i n a t e s [ j ]
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d i s t anc e = np . sq r t ( ( x1−x2 )∗∗2 + (y1−y2 )∗∗2)

i f d i s t ance < th r e sho ld ∗ ( r1+r2 ) :
c u r r c o o rd i n a t e s . pop ( j )
tmp lenght −= 1
j −= 1

j += 1

i += 1

pr in t (” a f t e r ” , l en ( cu r r c o o rd i n a t e s ) )

re turn cu r r c o o rd i n a t e s [ : : − 1 ]
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